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TWO-DIMENSIONAL WINGS OF MAXIMUM 

LIFT- TO-DRAG RATIO IN HYPERSONIC FLOW ("1 
- 

by 

DAVID G. HULL (" :: ) 

SUMMARY 

AAR-25 

The problem of maximizing the lift-to-drag ratio of a slender, two-dimensional, 

flat-top wing in hypersonic flow is considered under the assumptions that the pressure 

coefficient is modified Newtonian and the skin-friction coefficient is constant. Arbitrary 

conditions are imposed on the chord, the thickness, and the profile a rea ;  and the 

necessary conditions t o  be satisfied by a n  optimum wing are derived with the indirect 

methods of the calculus of variations. Then, several particular cases are analyzed 

and, for each case,  analytical expressions are determined for the optimum shape and 

the maximum lift-to-drag ratio. 
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Research Associate in  Astronautics, Department of Mechanical and 

Aerospace Engineering and Materials Science, Rice University, Houston, Texas.  



1 .  INTRODUCTION 

For two-dimensional, hypersonic wings, two extrema1 problems are of interest ,  

that is, to minimize the drag  for  a given lift and to maximize the lift-to-drag rat io  fo r  

unconstrnined lift. Since problems of the former type were  considered in  Ref. 1,  the 

object of this paper is to consider problems of the latter type.  With regard to the 

calculation of the lift-to-drag ratio,  the hypotheses employed are as follows: (a) the 

wing is two-dimensional; (b) the upper surface is a plane parallel  to  the undisturbed 

flow direction; (c) the lower surface is slender in  the chordwise sense; (d) the p re s su re  

coefficient is modified Newtonian; (e) the skin-friction coefficient is constant; (0 the 

base drag  is neglected; and (g) the effect of tangential forces on the lift is negligible. 

The maximum lift-to-drag ratio problem is formulated for  arbitrary constraints 

imposed on the chord, the thickness, and the profile area. Af ter  the necessary con- 

ditions to be satisfied by the optimum shape are stated in  general, several particular 

cases  are analyzed in detail. 
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2 .  FORMULATION OF THE VAFUATIONAL PROBLEM 

In order to relate the  lift-to-drag ratio and the profile area of a two-dimensional, 

flat-top wing t o  its geometry, the following Cartesian coordinate system is used: the 

origin 0 is the leading edge; the x-axis is in  the direction of the undisturbed flow and 

is parallel  to the upper surface; while the z-axis is normal t o  the x-axis and positive 

downward. If hypotheses (a) throu& (g) are considered and if the lower surface is 

represented by the relationship z = z(x), the lift-to-drag rat io  E = L/D is given by 

(Refs. 1 and 2) 

s,' i2 dx 
E = r c  3 

J (2 i- cf /n)& 
0 

where c is the chord, i the derivative dz/dx, C the constant skin-friction coefficient, 
f 

and n a factor modifying the Newtonian pressure  distribution(*). This lift-to-drag 

rat io  is to be maximized subject t o  the isoperimetric constraint of given profile area 

rc 
Jo A =  zdx  

2 In other words, the pressure coefficient is assumed to  be C = 2 n i  . (* ) 
P 
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and the inequality constraint 

5 2 0  

. .  AAR-25 I 

( 3 )  

which expresses the limits of validity of the Newtonian pressure  law. 

One way to account for h e q .  ( 3 )  is to t ransform it into an equality constraint hy 

introducing an appropriate auxiliary variable.  If this is done, one must expect the 

optimum contour to include subarcs  i = 0 .  From previous experience (see Chapter 14 

of Ref. 3) ,  it is known that the subarcs = 0 generally start a t  the initial point and 

terminate at the final point. Therefore, an alternate way to  account for  Ineq. (3) is 

to investigate the c lass  of airfoils composed of a zero-slope shape followed by a 

regular  shape followed by another zero-slope shape and, therefore,  defined by (Fig. 1) 

Y 0 c x  c x  
i 

i = o  , z = z . = o  
1 

(4) 

Y 
x < X " C  

f , z = z  = t  f z = o  

where the initial abcissa x., the final abcissa x the chord c y  and the thickness t 
1 f' 

may be either prescribed or free. If this point of view is taken, the variational problem 
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reduces to that of maximizing t h e  expression 

$f .2 
J xi ' z d x  

rxf - 3  
*J X i  

E =  
I z dx +Cfc/n  

subject to  the isoperimetric constraint 

f) A = J z dx t t(c - x 
xi 

and certain prescribed boundary conditions. 
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3 .  NECESSARY CONDITIONS 

According to Ref. 4, the  proposed problem is equivalent t o  that of maximizing 

the functional 

with respect t o  the functions z(x) and the parameters  c and t satisfying the isoperimetric 

constraint (6) and the prescribed boundary conditions. In Eq. (7), the functions F and 

G are defined as 

.2 . 3  F = z  - E z  + X Z  

G = - ECfc/n+ Xt(c - x ) f 

where the constant E is the maximum lift-to-drag rat io  and h is an undetermined, 

constant Lagrange multiplier. 

Euler Equation. It is known that the function z(x) which extremizes the functional 

(7) must be a solution of the Euler equation (see, 

dF . /& - F = O  
Z Z 

for instance, Chapter 1 of Ref. 3) 

(9) 



Its explicit form 

d .2  - (3Ez dx - 25) t- X = 0 

admits the first integral 

(11) 
.2 3Ez - 25 I - X X = C  

where C is a constant. A second integral can be obtained, but it is more convenient 

to derive it when analyzing particular cases. 

Transversali ty Condition. The integration constants which appear in  the general 

solution of the Euler equation can be determined by applying the prescribed boundary 

conditions and the natural boundary conditions. The latter are obtained from the 

transversali ty condition 

[(F - i F . )  z 6x + F. Z 6z 1: f 6G = 0 (12) 

which must be satisfied identically for every se t  of variations consistent with the p re -  

scribed boundary conditions. Since 6z. = 0 and 6z = 6t, the explicit form of Eq. (12) 
1 f 

is given by 

$- (EC /n  - At) 6c + (3Ei2 - 22 + Xx - Xc) 6t = 0 
f f 
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which, for the four classes of solutions 

Class I: x. = o  
1 

2 _- 

Class 11: x .  > o  
1 

7 

x. = o  Class 111: 2 
1 -___ 

Class IV: x. > o  
1 

9 -~ 

yields the following natural  boundary conditions : 

x free:  
i 

. 3  .2 
2E2. - z = O  

1 i .  

3 .2 2 E i  - z - = O  
f f  

- x = free: 
f 

x = c  
f 

x = c  
f 

x < c  
f 

x < c  
f 

(14) 

EC /n - X t  = 0 
f 

c =free: 

. 3  .2 2Ez - z - E C / n + X t = O  
f f  f 

x = c = f r e e :  
f 

.2 
3Ez - 2 i f  + X X  - X C  = O  

f f 
t free: -___ 

Weierstrass Condition. Once an extrema1 solution has been obtained, it is 

necessary to  verify tha t  it actually maximizes the functional (7). In this connection, 

the Weierstrass condition requires that 
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where z and ? a r e  the ordinate and the slope of the extremal a r c  and i, is the slope 

of the comparison a r c .  The explicit form of this inequality 

2 
(?::: - ?) (- E?, + 1 - 2Ek) 5 0 (17) 

is satisfied for  every choice of the comparison slope consistent with the constraint ( 3 )  

providing 

i 2 1/2E 

at  each point of the extremal solution. 
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4 .  - NONDIMENSIONAL QUANTITIES 

AAR- 25 

In the following sections, several  particular cases  are analyzed with the aic 

of the previous necessary conditions. Concerning the procedure to be followed, we 

f i rs t  determine the solutions of Class I; then, if  more  solutions are needed, we 

investigate those of Class 11, Class 111, and Class IV. In order  t o  present  the resul ts  

i n  the most compact way, it is convenient t o  introduce the nondimensional coordinates 

4 =x/c 9 5 =z/t  (19) 

and the thickness ratio 

(20) 

Furthermore,  the  following nondimensional variables are defined: 

1 /3 E, = E(Cf/n) 

- 1/3 
7, = m f / n )  

A, = A c - ~ ( C , / ~ )  - 1/3 

A = At-2(Cf/n) 1 /3 
0 
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5.  ABSOLUTE MAXIMUM LIFT-TO-DRAG RATIO 

If the chord, the thickness, and the profile area are free,  the optimum solution 

is of Class I and must satisfy the natural boundary conditions (15-4) and (15-5) with 

X = 0 .  The first integral (1  1 )  combined with the boundary condition (15-5) imp1ic.s 

that C = 0 and that 

i = 2/3E (22) 

Integrating this differential equation subject to the initial conditions, one obtains the 

re la t i on 

z = (2/3E)x 

which, applied at the trail ing edge, implies that the thickness is given by 

t = (2/3E) c (24) 

Therefore,  if the nondimensional coordinates (19) are introduced, the optimum airfoil 

shape is the wedge 

5 = 4  
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Finally, because of Eqs. (5), (21), (23), and (24), the optimum thickness ratio 

satisfies the relation 

and the maximum lift-to-drag ratio can be obtained from 

3- E, = ,J4 / 3  EE 0.529 

AAR- 2’5 1 

I 
I 

It should be noted that the geometry of the optimum wing is completely determined 

in  < <-coordinate system but depends on a scaling factor i n  the xz-coordinate system. 

Therefore,  there exist  an infinite number of wings having the lift-to-drag ratio (27). 

However, i f  one geometric quantity is specified (the chord, the thickness, o r  the 

profile area) ,  the optimum wing becomes unique. Should two o r  three geometric 

quantities be simultaneously specified, the geometry of the optimum wing would 

generally change, and a loss in the lift-to-drag rat io  would occur with respect to 

that predicted by Eq. (27). 
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6 .  GIVEN THICKNESS AND CHORD 

Since the profile area is free,  the relationship X = 0 holds, and the f i rs t  integral 

(11) implies that the slope of the regular shape is constant; hence, the regular shape 

is a straight line. 

Solutions of Class I (Figs. 2 through 4). For these solutions, the slope can be 

expressed as 

i = 7  

which, in the light of the initial conditions, can be integrated to give 

z = m  (29) 

Hence, the optimum shape is a wedge whose maximum lift-to-drag ratio is given by 

2 3  
E, = T* /(T, + 1) 

Finally, because of the Weierstrass condition (18), the solutions of Class I are valid 

providing 

7, 2 1 
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Solutions of Class 111 (Figs. 2 through 4). For these solutions, the natural 

boundary condition (15-2) allows one to  write 

2 = 1/2E 

Integrating this equation subject to the initial conditions, one obtains the relation 

z = (1/2E)x 

which, at the final point, becomes 

t = (1/2E)xf 

In a nondimensional form, the optimum airfoil shape is given by 

and, because of Eqs . (5), (32), and (34), is characterized by the following relation- 

ships between the lift-to-drag ratio, the thickness ratio, and the transition abcissa 

from the regular shape to the constant thickness portion: 

3 -  
9 E, = J S f  /2 2 /3 

7, = 5, 

Since the thickness ratio is given, it is convenient to  rewrite Eqs . (35) and (36) 

I 
I 
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5, = T * h *  

15 AAR-25 

(37) 

7 5 = 1  

with the understanding that 

7 ,  1 (39) 

In closing, it should be remarked that the solutions of this class are not unique; any 

combination of zero slope shapes and regular shapes having the slope (32) would yield 

a lift-to-drag ratio identical with that given by Eq. (38-2). 
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7 .  GIVEN PROFILE AREA AND --- CHORD 

Lf the profile a r e a  and the chord are prescribed, the geometry of the regular 

shape is governed by the differential equation (11). 

Solutions of Class - I (Figs.  5 through 8). Since the thickness is f ree ,  the natural __- 

boundary condition (15-5) applies and, i f  combined with Eq. (ll), implies that 

c = xc (40) 

Hence, in  the light of the Weierstrass condition (18), Eq. (11) can be rewritten as 

2 = (1/3E) (1 f [l - a(l - x/c)] ' /~} (41) 

where 

= - 3EXc (42) 

The integration of this differential equation subject t o  the  end conditions leads to  the 

relations hips 

= (c/3E) G(5 ,a) 7 (43 1 

where 

(44) 
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Forming the rat io  of Eqs . (43), one finds the geometry of the optimum airfoil to  be 

= G(4, cx)/G(1, a) 

The next s tep is t o  relate the quantity a to  the prescribed quantities A and c 

as well as to determine the maximum lift-to-drag rat io  and the optimum thickness 

ratio.  In this connection, if Eqs. (5), (6), (43-2), and (45) are combined, the 

following results can be obtained: 

7 ,  = G(l,a)/M(a) , E, = M(a)/3 , A, = N(a)/M(a) 

(45) 

where 

M(a) = (2 - (2/5a) [(4 + a)(l - - 41) 

(4 7) 
N(a) = 1/2 - (2/& 2 )[(a + 3a)(l - a) 312- 23 

Consequently, if the quantity a is eliminated between Eqs. (45) and (46), the following 

functional relations a r e  obtained: 

C = f,(L A,) 

7,: = f2(A,) , E, = f3(A,*) 
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Since the Weierstrass condition requires that a 3/4, these solutions are valid 

providing 

0.543 ‘A, 5 ~0 

- Solutions of Class I1 (Figs. 5 through 8). The remaining solutions are of 

Class I1 and must satisfy the natural boundary conditions (15-1) and (15-5). In 

particular, Eq. (15-5) and the first integral (11) imply that Eq. (40), and hence 

Eq. (41), is also valid here .  On the other hand, Eq. (15- 1) requires  that 

5. = 1/2E 
1 

which, with Eq. (41) evaluated at the initial point, allows one to  write 

a = 3 / 4 ( 1  - Si) 

As a consequence, the integration of Eq. (41) subject to  the end conditions leads to  

the relations 

(52) 

where 

(53) 
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The nondimensional shape of the optimum airfoil is then given by the  ratio of 

Eqs.  (52), that is, by 

AAR- 25 

(54) 

The next step is to combine Eqs. (S ) ,  (6), (52-2), and (54) to obtain the relationships 

Consequently, f rom Eqs. (54) and (55), it is seen that the solutions of Class I1 

satisfy the functional relations 

which are valid in  the range 

0 5 0.543 

(55) 
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8 .  GIVEN PROFILE AREA AND THICKNESS -__-__-____~---- 

lf the profile a r ea  and the thickness are prescribed, the geometry of the regular 

shape is governed by the differential equation ( l l ) ,  which is rewritten here  as follows: 

where r): is defined by Eq. (42) and where 

R = - 3EC (59) 

Solutions of Class  I (Figs. 9 through 13). The integration of the above differential 

equation subject to the end conditions leads to  the  following relations: 

where 

As a consequence, the shape of the optimum airfoil can be expressed as 

5 = G(4,a7 P)/G(l,a, P) 
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(63) 

Furthermore, since the chord is free, the natural boundary condition (15-4) must 

be satisfied and, if combined with Eqs . (58), (63-l), and (63-2), yields the result  

(65) 
15aP - 2(4 + P + 5a)(l - P$/2 + 2(4 + 9 - a)(l - f3 +a)  3 /2 = 0 

In order  to find the solutions of this equation? it is necessary to apply the Weierstrass 

condition (18) which, combined with Eq. (58), requires that 

P - a5 3/4 (66) 

If this inequality is employed at the initial point ( 5 .  = 0) and the final point ( 4  = l ) ,  
1 f 
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the  following results are obtained: 

p 5 3/4 7 13- a < 3 / 4  (67) 

Numerical analyses show that, for 0 1 P 3/4, there  exist two values of the parameter 

a which satisfy Eq. (65); thus, the solutions of Class I must be divided into two subclasses. 

-- Solutions of -- Class I-A. These solutions are given by the upper curve in  Fig. 9 

and can be represented by the equation 

a = a($) 

As a consequence, the parameters a and l3 can be eliminated between Eqs . (62), 

(63), and (68) t o  obtain the functional relationships 

5 = f,(S,Ao) 

7, = f  ( A )  9 E, = $(Ao) 2 0  

which are valid in the range 

0 S A  10 .396  
0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 

23 AAR-25 

Solutions of Class  I-B. These solutions arc reprcscntcd by the lower curve in 

Fig. 9, that i s ,  by the relation 
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a=O 

Hence, the optimum airfoil shape is the wedge 

5 = 5  (72 1 

whose thickness ratio and lift-to-drag ratio are parametrically represented by the 

relationships 

(73 1 

Elimination of the parameter B between these equations leads to functional relations 

of the form (69-2) and (69-3) which a re  valid providing 

(74) 0.396 S A  1 0 . 5  
0 

Solutions of Class I11 (Figs. 9 through 13). The remaining solutions are of Class 
I - 

111, and hence, must satisfy the natural boundary conditions (15-2) and (15-3). The 
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first of these conditions requires that 

i = 1/2E 
f 

which, when combined with Eq. (58), implies that 

P = 3/4 +a<f  

Consequently, the differential equation governing the regular shape becomes 

1 /2 
= (1/3E) (1 -t [1/4 - a(Cf - 9 1  } 

and can be integrated subject t o  the end conditions to obtain the relations 

z = (c/3E)H(4, Ef, a) , t = (c/3E)H(Cf, t f , a )  

ASIR-25 

(75) 

(76) 

(77) 

(78) 

where 

(79) ~ ( 4 ,  t f , ~ )  = s + (2/3a){~1/4 - a(<, - 5 1 1 ~ ~ ~  - [1/4 - 3 /2 } 

By forming the ratio of Eqs . (78). we can express the geometry of the optimum airfoil 

as 

5 = H(5,5,, a)/H(Cf, Ef, a) (80) 

The next step is to  combine Eqs. (3, (6), (78-2), and (80) to obtain the relations 
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where 

Finally, the natural boundary condition (15-3) in combination with Eqs . (81- 1) and 

(81-2) yield the following relation between a and 5 - 
f '  

Since the Weierstrass condition (18) and Eq. (77) require that the inequality 

be satisfied, the only solution of Eq. (83) is 

a = O  

Therefore,  the shape of the optimum airfoil becomes 



26 

while the thickness ratio and the lift-to-drag ratio can be expressed parametrically 

as 

Finally, Eqs.  (86) and (87) can be used to write the functional relations 

AAR-25 
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LIST OF CAPTIONS _____-__--- 

Coordinate system. 

Optimum shape. 

Transition abscissa.  
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